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S1. INTRODUCTION

Stepwise procedures are often used to select concomitant

variables in regression with censored data (Krall, Uthoff & Harley,

V197S; Peduzzi, Hardy & Holford, 1980; Lee, Harrel, Tolley & Rosati,

1983). An undesirable feature of stepwise procedures is that they

lead to a single subset of variables and do not suggest alternative

good subsets. Another concern is the possibility of premature

termination. We shall see later that this is indeed the case when

stepwise procedures are applied to the multiple myeloma data

(Krall, Uthoff & Harley, 1975). In comparison, all subsets

regression provides more information, is more reliable and is to

be preferred provided that it is computationally feasible. The

purpose of this paper is to show that within the framework of the

proportional hazards model (Cox, 1972) all subsets regression can

X . be performed with very little computational efforts.

The first selection criterion that we consider is based on

cross-validation. We argue that the correct way to cross-validate

in our setting is to change the status of one observation from

uncensored to censored. An asymptotically equivalent criterion

that requires less computation is the following: if a indexes

the model, choose a to minimize

A, + 2P (1)

where Wa denotes the partial likelihood ratio statistic for

testing the model a against the full model and P is the number

of covariates included in model a. The criterion that

requires least computation is



3

A' uW1 + 2P
,a CL G (2)

where W1 denotes Wald statistic. We show that criterion A' is

formally equivalent to Mallow's Cp. As a result, we are able to

compute and compare the values of A' for all possible subsets

making use of standard statistical packages. We apply this to

the multiple mysloma data and obtain results remarkably different

from those obtained by previous workers using stepwise procedures.

New insights are gained and the superiority of all subsets

regression over stepwise regression is clearly demonstrated.
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2. CRITERIA FOR SELECTING VARIABLES

The proportional hazards model is specified by the hazard

relationship

ACt;x) - ;ko~t~e xpJ,)

where x is a row vector of P covariates, B is a column vector of

P regression constants and X)(t) is an arbitrary and nspecified

baseline hazard function. Let (t.,5.), j-1,...,n be an observed

sample of failure times with 6j-0 indicating a right-censored

observation and 6j - 1 indicating a failure. The associated covariate

vectors are xj, ... , xn . An estimate of B is obtained by maximizing

the partial likelihood

k e(i X
Lx(O T (3)

JcR Ci)

where t(1) < ... < t(k) are the uncensored failure times with

corresponding covariates x(1 ) , ... , X(k), censoring status

a ... , 8 and R M is the set of individuals known to be

alive just prior to t(i). By setting different components of B

to zero, we obtain 2p submodels of the full model.

We propose the following criterion for model choice: if a

indexes the model, choose a to maximize

k eX M)A-i ( Q)

a eXjBi (4)
lI M

ic Ci)

I * q "', " ' - - . - - .. . . .. . .
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where 1-i a) denotes the maximum partial likelihood estimate of B
computed under model a when 6 is changed from one to zero. We

- Ci)

call (4) the cross-validatory criterion for two reasons. Firstly,

we note that changing 6(i) from one to zero corresponds to removing

the ith term from the partial likelihood (3). This is similar

mathematically to ordinary cross-validation where the effect of

deleting one observation is to remove one term from the likelihood

function. Secondly, we note that the ith term of (3) is the

conditional probability

P(death of Ci) at time t lone death in R M at time t i). (5)

4It would be unrealistic to access the choice of a with

a -'a ( 6)

JeR ci )

Since the information that (i) died at tci) is used to obtain

!(a), the ith term of (6) is a biased estimate of (5). If we

change 6(i ) from one to zero, we still retain the information

that (i) is alive just prior to t(i) but the fact that (i) died

at t(i) is no longer used. This is very similar in spirit to

ordinary cross-validation.

While the cross-validatory criterion is of theoretical

interest, its computation is prohibitive. For each of the 2p

models, we have to compute Bi, ia 1,...,k, each of which requires

iteration. By following the proof of Stone (1977), we can show

the asymptotic equivalence of model choice by cross-validation
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and criterion A. In particular, if 01 C Q 2 and al is correct,

then the asymptotic significance level of either criterion is

p(X 2 2v) where v a P - P * Criterion A as defined in (1)V CL2 CL

requires less computation since we only need to compute one

for each model. In spite of this, the task remains formidable.

An alternative criterion is A' which is based on Wald statistic.

Peace & Flora (1978), Lee, Harrel, Tolley 4 Rosati (1983) compare

the partial likelihood ratio statistic and Wald statistic

and find them comparable in accessing the effects of concomitant

variables in survival analysis. We also find good agreement

between A and A'. Criterion A' as defined in (2) is computationally

simplier. If we partition 8T as CT 82) and ^T (i, R is

obtained under the full model, then W' = where without

loss of generality we have assumed that model * corresponds to

setting 82 = 0 and

[C
1  C1 21 -1

LC22 C22J

the inverse of the information matrix, is the estimated covariance

matrix of 1. Lawless & Singhal (1978) note that if we begin with

SI I T' (7)
^T T.

then by operating on the matrix with a sequence of sweep operations,

we can obtain W' 0 2 c2202 for all 2 models. Instead of (7), we

use the matrix

-- - (8)

iT, (N-P-l1) + BIB
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where N is an arbitrary integer greater than P. This matrix can

be obtained easily since A and Ca I are the standard output of

any program that does Cox regression. The program that we use is

the BMDP program P2L. If we treat (8) as if it were the matrix

of corrected sums of squares and cross products of the independent

and dependent variables computed from a sample of size N, then

criterion A' is formally equivalent to Mallow's Cp. To see this,

note that

C )cz- RSS (a) + 2 (PCa  1) - N
82

where 82 = RSS(ful1 model)/(N - P - 1) = 1 by our choice of (8).

Since RSS(a) a RSS(full model) + 2C222-

C (Ca) a A' - (P - 1)

and the two criteria are equivalent. The problem can now be

handled by standard statistical packages. We use the BMDP

program P9R which does all subsets linear regression.
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3. AN EXAMPLE

Krall, Uthoff a Harley (1975) presents a data set consisting
of the survival times of sixty five multiple myeloma patients

with sixteen concomitant variables. Seventeen of the observations

are censored. They assume an exponential regression model in

which the mean survival time is a linear function of the concomitant

variables. A step-up procedure based on the likelihood ratio

criterion leadsto the subset (1,2,16). Lawless 6 Singhal (1978)

adopt a proportional hazards exponential regression model

X~x) - AoepCxB)

They report the best three subsets of each size, according to

the value of the likelihuod ratio statistic and Wald statistic.

The best subset of size two is (1,21. To compare subsets of

different sizeswe use Akaike's criterion and end up with (1,21

as the best subset. Unfortunately, Lawless 4 Singhal do not

consider all sixteen concomitant variables of the original data

set. Instead, they consider only variables 1, 2, 3, 5, 6,. 7, 9,

16. We shall see later that this is a very poor choice. Peduzzi,

Hardy & Holford (1980) also assume a multiplicative exponential

regression model and use a stepwise procedure to identify tl,2}

as the best subset of the eight variables considered by Lawless

Singhal. Their criterion for inclusion of a variable is based

on the score statistic for testing the current model against the

candidate model. The criterion for removal of a variable is

based on Wald statistic. The above analyses are all based

on exponential regression models, an analysis based on Cox model
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appears as an example in BMDP manual where stepwise regression

based on the partial likelihood ratio criterion leads again to

the subset {1,2}. Our analysis provides a lot more information

A. than any stepwise procedure. We report in Table 1 the best three

subsets of each size according to CP = A' - 1S. For comparison

purpose, we also compute the values of LR a A-1S for these models.

The agreement between A and A' appears to be good especially for

the better subsets. It can be observed that the value of CP for

the best subset of size P decreases initially,reaches a bottom

'.at Pa 8,and then begin to increase. The best subset is

(1,2,4,6,7,8,12,13} which has a log partial likelihood of -140.20

compared with -138.14 of the full model. The relationship among

the best five subsets is shown in Figure 1 and summary statistics

Sfor the best subset is given in Table 2. The subset (1,2) selected

by the majority of previous workers is far from being the best.

Its CP value of 11.04 and LR value of 10.52 are considerably larger

than the corresponding values 5.00 and 5.11 of the best subset.

The associated log partial likelihood of -148.90 is unimpressive.

The ,partial likelihood ratio statistic for testing the subset

1,21 against the best subset is 17.4 which is significant at the

0.01 level. Neverthless, we observe that the addition of an extra

variable to {1,21 does not add much. In fact, the improvement is

gradualuntil we reach Pa -7. This explains the selection of (1,21

by stepwise procedures. Lastly, we consider {1,2,3,5,6,7,9,16,

the set of variables used by Lawless 4 Singhal. Its CP value

of 17.84 and LR value of 17.66 are large. The associated log

partial likelihood is -146.47 compared with -140.20 of the best

subset which also has eight variables and -146.54 of the best

subset of size 4.
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Table 1. Best three models of each size.

Overall Log partial
Pa Variables in model Position CP LR likelihood

1 1 13.28 12.67 -150.98
2 14.35 15.61 -152.4513 16.71 18.39 -153.84

2 -1,2 11.04 10.52 -148.90
1.13 12.22 11.52 -149.40
1,4 13.92 13.98 -150.63

3 1,2,16 10.93 10.82 -148.05
1,2,13 10.96 10.77 -148.03
1,2,14 11.11 11.02 -148.16

4 1,3,12,13 9.26 9.80 -146.541,12,13,14 10.15 9.22 -146.25

' 1,2,12,13 10.23 10.63 -146.96

5 1,2,12,13,14 7.99 8.63 -144.96
1,3,7,12,13 8.59 10.17 -145.73
1,3,4,12,13 8.89 9.84 -145.56

6 1,3,4,7,12,13 7.96 9.28 -144.28
1,2,7,12,13,14 8.00 9.12 -144.20
1,3,6,7,12,13 8.10 8.95 -144.12

7 1,3,4,6,7,12,13 5 6.45 7.59 -142.44
1,3,4,7,8,12,13 7.11 7.67 -142.48
1,3,4,7,12,13,14 8.04 9.19 -143.24

8 1,3,4,6,7,8,12,13 1 5.00 5.11 -140.20
1,3,4,7,8,12,13,14 7.23 7.65 -141.47
1,2,3,4,6,8,12,13 7.28 8.18 -141.73

-f1,2,3,5,6,7,9,16 17.84 17.66 -146.47

9 1,2,3,4,6,7,8,12,13 2 5.89 5.85 -139.57
1,3,4,6,7,8,12,13,14 3 6.15 6.15 -139.72
1,3,4,S,6,7,8,12,13 6.53 6.75 -140.02

10 1,2,3,4,6,7,8,12,13,14 4 6.33 6.32 -138.80
1,3,4,6,7,8,12,13,14,15 7.08 7.16 -139.22
1,2,3,4,6,7,8,12,13,15 7.66 7.64 -139.46

11 1,2,3,4,6,7,8,12,13,14,15 7.23 7.23 -138.26
1,2,3,4,5,6,7,8,12,13,16 9.17 9.32 -139.30
1,3,4,5,6,7,8,10,11,12,13 10.15 10.33 -139.81

12 9.13 9.12 -138.21

13 11.07 11.07 -138.18

14 13.02 13.02 -138.15

15 15.01 15.01 -138.15

Full model 17.OQ 17.00 -138.14
* This is the subset selected by stepwise procedures.
t This is Lawless Singhal's subset.
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Pa a7 (1, 3, 4, 6, 7, 12, 13)

[ + (a)

P a 8 (1, 3, 4, 6, 7, 8, 12, 13)

.(2) / {14)

P pL a9 (1, 23,4,6, 7, 8,12, 13) (1, 3, 4,6, 78,12.13, 14)

+ (14) \ (2)

P =1 0 (1, 2, 3, 4, 6, 7, 8, 12, 13, 14)

Fig. 1. Relationship among the best five subsets

*1

o.

ii.

5,
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Table 2. Summnary-*statistics for the best subset.

Log partial likelihood u-140.20

Variable Coefficient Standard error Coeff,./S.E. Exp(Coeff.)

1 1.9160 .6112 3.1346 6.7938

3 -1.5439 .502S -3.0726 0.213S
4 .9889 .4367 2.2647 2.6883

6 -.8171 .3951 -2.0681 0.4417
7 1.8418 .7701 2.3915 6.3081
8 .8047 .4078 1.9734 2.2360

12 .1070 .0311 3.4384 1.1130
13 l.S074 .4147 3.6345 4.5149

VW
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20. ABSTRACT

This paper shows that within the framework of the proportional hazards

model all subsets regression can be performed with very little computational

efforts. A selection criterion based on Wald statistic is motivated by a

cross-validation argument in which the status of one observation is changed

from uncensored to censored. This criterion is seen to be formally equivalent

to Mallow's C and thus the problem, is reduced to one readily handled by standard

statistical packages. The procedure is applied to the multiple myeloma data to

give results renarkably different from those obtained by previous workers using

stepwise procedures. New insights are gained and the superiority of all subsets

regression over stepwise regression is clearly demonstrated.
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